切换视频源:

GAN (Generative Adversarial Nets 生成对抗网络)

作者: rcdrones 编辑: rcdrones 2017-05-12

学习资料:

要点

GAN 是一个近几年比较流行的生成网络形式. 对比起传统的生成模型, 他减少了模型限制和生成器限制, 他具有有更好的生成能力. 人们常用假钞鉴定者和假钞制造者来打比喻, 但是我不喜欢这个比喻, 觉得没有真实反映出 GAN 里面的机理.

所以我的一句话介绍 GAN 就是: Generator 是新手画家, Discriminator 是新手鉴赏家, 你是高级鉴赏家. 你将著名画家的品和新手画家的作品都给新手鉴赏家评定, 并告诉新手鉴赏家哪些是新手画家画的, 哪些是著名画家画的, 新手鉴赏家就慢慢学习怎么区分新手画家和著名画家的画, 但是新手画家和新手鉴赏家是好朋友, 新手鉴赏家会告诉新手画家要怎么样画得更像著名画家, 新手画家就能将自己的突然来的灵感 (random noise) 画得更像著名画家. 我用一个短动画形式来诠释了整个过程 (GAN 动画简介).

下面是本节内容的效果, 绿线的变化是新手画家慢慢学习如何踏上画家之路的过程. 而能被认定为著名的画作在 upper boundlower bound 之间.

GAN (Generative Adversarial Nets 生成对抗网络)

超参数设置

新手画家 (Generator) 在作画的时候需要有一些灵感 (random noise), 我们这些灵感的个数定义为 N_IDEAS. 而一幅画需要有一些规格, 我们将这幅画的画笔数定义一下, N_COMPONENTS 就是一条一元二次曲线(这幅画画)上的点个数. 为了进行批训练, 我们将一整批话的点都规定一下(PAINT_POINTS).

import torch
import torch.nn as nn
import numpy as np
import matplotlib.pyplot as plt

torch.manual_seed(1)    # reproducible
np.random.seed(1)

# 超参数
BATCH_SIZE = 64
LR_G = 0.0001           # learning rate for generator
LR_D = 0.0001           # learning rate for discriminator
N_IDEAS = 5             # think of this as number of ideas for generating an art work (Generator)
ART_COMPONENTS = 15     # it could be total point G can draw in the canvas
PAINT_POINTS = np.vstack([np.linspace(-1, 1, ART_COMPONENTS) for _ in range(BATCH_SIZE)])

著名画家的画

我们需要有很多画是来自著名画家的(real data), 将这些著名画家的画, 和新手画家的画都传给新手鉴赏家, 让鉴赏家来区分哪些是著名画家, 哪些是新手画家的画. 如何区分我们在后面呈现. 这里我们生成一些著名画家的画 (batch 条不同的一元二次方程曲线).

def artist_works():     # painting from the famous artist (real target)
    a = np.random.uniform(1, 2, size=BATCH_SIZE)[:, np.newaxis]
    paintings = a * np.power(PAINT_POINTS, 2) + (a-1)
    paintings = torch.from_numpy(paintings).float()
    return paintings

下面就是会产生曲线的一个上限和下限.

GAN (Generative Adversarial Nets 生成对抗网络)

神经网络

这里会创建两个神经网络, 分别是 Generator (新手画家), Discriminator(新手鉴赏家). G 会拿着自己的一些灵感当做输入, 输出一元二次曲线上的点 (G 的画).

D 会接收一幅画作 (一元二次曲线), 输出这幅画作到底是不是著名画家的画(是著名画家的画的概率).

G = nn.Sequential(                      # Generator
    nn.Linear(N_IDEAS, 128),            # random ideas (could from normal distribution)
    nn.ReLU(),
    nn.Linear(128, ART_COMPONENTS),     # making a painting from these random ideas
)

D = nn.Sequential(                      # Discriminator
    nn.Linear(ART_COMPONENTS, 128),     # receive art work either from the famous artist or a newbie like G
    nn.ReLU(),
    nn.Linear(128, 1),
    nn.Sigmoid(),                       # tell the probability that the art work is made by artist
)

训练

接着我们来同时训练 DG. 训练之前, 我们来看看G作画的原理. G 首先会有些灵感, G_ideas 就会拿到这些随机灵感 (可以是正态分布的随机数), 然后 G 会根据这些灵感画画. 接着我们拿着著名画家的画和 G 的画, 让 D 来判定这两批画作是著名画家画的概率.

for step in range(10000):
    artist_paintings = artist_works()           # real painting from artist
    G_ideas = torch.randn(BATCH_SIZE, N_IDEAS)    # random ideas
    G_paintings = G(G_ideas())                  # fake painting from G (random ideas)

    prob_artist0 = D(artist_paintings)          # D try to increase this prob
    prob_artist1 = D(G_paintings)               # D try to reduce this prob

然后计算有多少来之画家的画猜对了, 有多少来自 G 的画猜对了, 我们想最大化这些猜对的次数. 这也就是 log(D(x)) + log(1-D(G(z))论文中的形式. 而因为 torch 中提升参数的形式是最小化误差, 那我们把最大化 score 转换成最小化 loss, 在两个 score 的合的地方加一个符号就好. 而 G 的提升就是要减小 D 猜测 G 生成数据的正确率, 也就是减小 D_score1.

    D_loss = - torch.mean(torch.log(prob_artist0) + torch.log(1. - prob_artist1))
    G_loss = torch.mean(torch.log(1. - prob_artist1))

最后我们在根据 loss 提升神经网络就好了.

    opt_D.zero_grad()
    D_loss.backward(retain_graph=True)      # retain_graph 这个参数是为了再次使用计算图纸
    opt_D.step()

    opt_G.zero_grad()
    G_loss.backward()
    opt_G.step()

上面的全部代码内容在我的 github.

可视化训练过程

可视化的代码很简单, 在这里就不会意义叙说了, 大家直接看代码 吧. 在本节的最上面就是这次的动图效果, 最后达到收敛时, 下过如下, G 能成功的根据自己的”灵感”, 产生出一条很像 artist 画出的曲线, 而 D 再也没有能力猜出这到底是 G 的画作还是 artist 的画作, 他只能一半时间猜是 G 的, 一半时间猜是 artist的.

GAN (Generative Adversarial Nets 生成对抗网络)

分享到: Facebook 微博 微信 Twitter
如果你觉得这篇文章或视频对你的学习很有帮助, 请你也分享它, 让它能再次帮助到更多的需要学习的人. 莫烦没有正式的经济来源, 如果你也想支持 莫烦Python 并看到更好的教学内容, 赞助他一点点, 作为鼓励他继续开源的动力.

支持 让教学变得更优秀